
The Picard stack and Div1

November 11, 2024

1. Vector bundles on analytic stacks

The goal of today’s talk is to introduce and study the Picard stack Pic classifying line
bundles on the twistor P1 as introduced last time, as well as the related stack Div1 (which
will be especially important as we continue). This is the first example of the stack BunG

parametrizing G-bundles on the curve, for the case G = Gm. First, though, we need to say
what this means: what is a vector bundle on an analytic stack?

The most natural approach, parallel to how we define analytic stacks themselves, is
to work locally: on an affine analytic stack AnSpecA, a vector bundle should be a finite
projective A-module, i.e. a perfect complex concentrated in degree 0. We then hope that
the functor associating to A the anima of finite projective A-modules descends along !-covers.

Unfortunately, this fails to be true in general. It is true however if we restrict to certain
special analytic rings, called Fredholm rings; in particular we will see that totally discon-
nected C-algebras are Fredholm, and so we get a good notion of vector bundles on analytic
stacks which are covered by totally disconnected algebras, and in particular for those such
as the relative twistor P1 which are obtained as realizations of totally disconnected stacks.

Proposition 1. Let A → B be a map of analytic rings such that − ⊗L
A B : D(A) → D(B)

is conservative (e.g. if the map is !-descendable). If M is a static finitely generated A▷(∗)-
module and the (non-derived) tensor product M ⊗A B vanishes, then M = 0.

Proof. If M is nonzero, we can find a nonzero quotient generated by a single element with
the same properties, which is then of the form A/I for some ideal I ⊂ A▷(∗) and so carries an
algebra structure; thus if we can prove A/I = 0 then we must have M = 0. By assumption
A/I ⊗A B = 0 and hence (since A/I is static) A/I ⊗L

A B = 0, and so the claim follows since
we assume −⊗L

A B is conservative.

Corollary 2. Let A → B be a map of analytic rings such that − ⊗L
A B is conservative

and let M be a perfect complex of A-modules. Then the amplitude of M is the same as the
amplitude of M ⊗L

A B; in particular if M is a finite projective A-module, then M ⊗L
A B is a

finite projective B-module.

Proof. It suffices to show that the amplitudes agree on the right. In each degree i, let M (i) =
(· · · → Mi−1 → Mi) → M be the subcomplex given by truncation; taking H0(M/M (i)) then
gives a static finitely generated A▷(∗)-module, which vanishes for i above the amplitude of
M and whose base change to B vanishes above the amplitude of M ⊗L

A B. By the previous
proposition, the base change vanishes if and only if the original module does, and so these
conditions are equivalent.

Corollary 3. Let A be an analytic ring such that any dualizable object of D(A) is a perfect
complex. Then any object of D(A) which is !-locally a perfect complex is in fact a perfect
complex, and its amplitude can be determined !-locally. In particular any object of D(A)
which is !-locally a finite projective module is in fact a finite projective A-module.
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1 VECTOR BUNDLES ON ANALYTIC STACKS

Proof. An object which is !-locally a perfect complex is dualizable, which by our assumption
on A implies that it is in fact a perfect complex. The amplitude statement follows from the
previous corollary.

This condition on A will be useful enough that we give it a name: an analytic ring A is
Fredholm if every dualizable object of D(A) is a perfect complex.

Proposition 4. An analytic ring A is Fredholm if and only if for any compact object K ∈
D(A) and trace-class endomorphism f : K → K, the cone of 1− f is a perfect complex.

Proof. If the stated condition holds, then any dualizable objectK is compact and the identity
is trace-class, so by assumption the cone of 1 − 1 : K → K, which is (isomorphic to) just
K, is a perfect complex. Conversely if A is Fredholm, K is compact, and f : K → K is
trace-class, then the cone of 1−f is equivalently that of 1−f on K[1/f ] and hence compact
and nuclear, therefore dualizable, and so since A is Fredholm it must in fact be a perfect
complex.

Proposition 5. Let A → A be a surjective map of analytic rings such that A is Fredholm
and for every finitely presented static A-module M , if M ⊗A A = 0 then M = 0. Then A is
Fredholm.

Proof. Assume K is a dualizable A-module. By shifting, we can assume in nonnegative (ho-
mological) degrees, with H0(K) nonzero. By compactness, H0(K) is finitely presented, and
K⊗AA is dualizable and hence a perfect complex sinceA is Fredholm. Thus it can be killed by
finitely many elements: we can find x1, . . . , xr ∈ H0(K) such that M = H0(K)/(x1, . . . , xr)
satisfies M⊗AA = 0, and so by assumption M = 0, i.e. H0(K) is a quotient of a free module
Ar generated by the xi. Taking the cone of Ar → H0(K) and repeating the process, we get
a presentation of K by a chain of free A-modules; by compactness this is perfect, so every
dualizable A-module is a perfect complex, i.e. A is Fredholm.

In particular, one can check Fredholm-ness after passing along the map A → π0A, and so
can reduce to the static case. Our interest is in the bounded case, where we can say more:

Proposition 6. Let A be a bounded gaseous R-algebra and M be a finitely presented static
A-module. If M ⊗A A† -red = 0, then M = 0. In particular if A† -red is Fredholm, then so is
A.

Proof sketch. The second part follows from the first by the previous proposition, so it suffices
to prove the first part. As above, we can assume that A is static. Since M is finitely
presented, we can find a surjection A[S] → M , corresponding to a map S → M . The image
of Nil†(A)[S] → A[S] → M is killed after base change to A† -red; since M ⊗A A† -red = 0 by
assumption, the map from Nil†(A)[S] is also surjective. Thus, after passing to some cover
S ′ → S, we can lift S ′ → S → M to a map g : S ′ → Nil†(A)[S]. By carefully iterating
a lifting process whose details we omit, we can actually assume S ′ = S, and so we obtain
g : S → Nil†(A)[S] lifting S → M , which induces an endomorphism A[S] → Nil†(A)[S] →
A[S] which we also denote by g. Since M is a quotient of the cokernel of 1 − g, to show it
is zero it suffices to show that 1 − g is surjective; in fact it is an isomorphism, with inverse
1 + g + g2 + · · · which one can show exists via a similar iterating process.
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Corollary 7. Every totally disconnected C-algebra is Fredholm.

Proof. Working via stalks as we often do for totally disconnected C-algebras, the †-reduction
is C and so it suffices to prove that C is Fredholm, i.e. all dualizable objects in gaseous C-
vector spaces are perfect complexes, which is the same argument as the usual one that
dualizable objects in D(C) are perfect complexes.

In particular we have shown that finite projective modules satisfy good descent properties
on Fredholm rings and therefore on totally disconnected C-algebras. We can now define
vector bundles as expected: a vector bundle on an analytic stack X is an object E ∈ D(X)
such that there is some !-cover by affine analytic stacks on which E pulls back to finite
projective modules. For realizations of totally disconnected stacks, these have the descent
properties we expect.

2. The Picard stack

We can now define the Picard stack Pic straightforwardly as the functor sending a totally
disconnected C-algebra A to the anima of line bundles on XR,A.

Proposition 8. The Picard stack Pic is an object of TDStack.

Proof. One cannot apply naive descent arguments, as A 7→ XR,A doesn’t obviously preserve
!-covers and does not commute with finite limits. However, by definition a line bundle on
XR,A is equivalently a pair of line bundles on AnSpecA and XR×AnSpecRAnSpecCont(S,R)
together with an isomorphism of their pullbacks to AnSpecCont(S,R). By the results of the
previous section, since A is a totally disconnected C-algebra it is Fredholm and so vector
bundles on it have good descent properties; for the other parts, it suffices to see that the
functor mapping S to the category of vector bundles on AnSpecCont(S,R) is a stack, which
is the lemma below.

The careful reader will note that to make sure this plays well with passing to strongly
totally disconnected stacks we should verify that the moduli problem commutes with ℵ1-
filtered colimits. This has to do with sequential colimits preserving Cauchy completeness,
which we leave to reader more careful than the author to verify.

Lemma 9. The functor sending a compact Hausdorff set S to the category of vector bun-
dles on AnSpecCont(S,R) is a sheaf of categories for the topology where covers are jointly
surjective finite families.

This is a “pure condensed math” result, generalizing Theorem 3.3 of Condensed.pdf, and
so we omit the proof. Notably this is stronger than what we needed above, which is just the
restriction to light profinite sets.

For each integer n, we have a line bundle OXR(n) on the (absolute) twistor P1, which
pulls back to a line bundle OXR,A(n) on XR,A with endomorphisms the invertible elements in

Hom(OXR,A(n),OXR,A(n)) ≃ Hom(OXR,A ,OXR,A) = BC(O) ≃ Rla

as last time, i.e. Aut(OXR,A(n)) ≃ R×,la. This gives for each n a map ∗/R×,la → Pic, which
assemble to a map ⊔

n∈Z

∗/R×,la → Pic .
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Theorem 10. The map ⊔
n∈Z

∗/R×,la → Pic

is an isomorphism.

In particular there is a degree map deg : Pic → Z given by composing the inverse of the
map above with each structure map ∗/R×,la → ∗, sending OXR(n) 7→ n.

Proof. The existence of the line bundles OXR,A(n) and the fact that their automorphism
groups are R×,la are straightforward, giving the injectivity of the map; the hard part is the
surjectivity, i.e. the statement that any line bundle on XR,A is isomorphic to one of these.

Let L be a line bundle on XR,A, which by definition gives rise to a line bundle L on
XR×AnSpecRAnSpecCont(S,R). For each s ∈ S, evaluation at s gives a map Cont(S,R) → R,
inducing AnSpecR → AnSpecCont(S,R) and thus XR → XR ×AnSpecR AnSpecCont(S,R),
pullback along which gives a line bundle Ls on XR, where we know line bundles are classified
by their degrees. This gives a map S → Z sending

s 7→ degLs,

which must be locally constant, and therefore we can assume in fact constant, and by twisting
we can assume is 0, i.e. Ls ≃ OXR for each s ∈ S. Then

RΓ(XR ×AnSpecR AnSpecCont(S,R),L)

is a perfect complex of Cont(S,R)-modules, a priori concentrated in degrees 0 and 1; but its
first cohomology is fiberwise H1(XR,O) = 0, hence vanishes globally, so this is a line bundle
concentrated in degree 0 over Cont(S,R), hence trivial, admitting a global section; therefore
L itself admits a global section and so is trivial.

We then want to trivialize L: this amounts to extending the global section to the point
at infinity AnSpecA. If we assume that A is strongly totally disconnected, so A† -red ≃
Cont(S,C), then the section on Cont(S,C) automatically lifts to one on A; and we can
assume this since (up to the filtered colimit issues) these essentially give a basis for totally
disconnected algebras.

3. Degree 1 divisors

We can now define the stack of degree 1 divisors rather straightforwardly: Div1 is the object
of TDStack sending a totally disconnected C-algebra A to the anima of pairs (L, s) where
L is a degree 1 line bundle on XR,A and s ∈ Γ(XR,A,L) is a fiberwise nonzero section, i.e. a
section which is nonzero after pullback along every geometric point AnSpecCgas → A. This
is equivalent to giving a Cartier divisor V (s) → XR,A (the vanishing locus of s); in the p-adic
analogue these degree 1 divisors would be given by untilts of A. One of the main things
missing from the archimedean picture is an independent interpretation of these “untilts.”

By Theorem 10, the degree 1 line bundle L is locally isomorphic to O(1), so we want to
study sections (up to scaling) of O(1) which are fiberwise nonzero. This suggests studying
the subfunctor BC(O(1)) \ {0} ⊂ BC(O(1)), sending A to the anima of fiberwise nonzero
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sections of OXR,A(1). Since the last condition is determined by C-points, the subfunctor is
determined by the underlying condensed anima, and since the condition is open it there gives
an open immersion BC(O(1)) \ {0} ⊂ BC(O(1)). Finally, accounting for scaling, we arrive
at the following proposition:

Proposition 11. There is an isomorphism

Div1 ≃ (BC(O(1)) \ {0})/R×,la

in TDStack.

To make this into an explicit description of the stack Div1, we would like to have an
explicit description of BC(O(1)). First, we have to specify what we mean by O(1) rather
than only its isomorphism class: take it to be the ample line bundle O([∞]) associated to
the degree 1 divisor ∞ = AnSpecC ⊂ XR.

Proposition 12. There is an isomorphism

BC(O(1)) ≃ A1,an × RBetti

of BC(O) ≃ Rla-module objects in TDStack.

Proof. By the definition of XR,A by pushout, we have a Cartesian diagram

BC(O(1))(A) Γ(XR,O(1))⊗R Cont(S,R)

A Cont(S,C)

which as A (and thus S) varies gives

BC(O(1)) ≃ A1,an ×CBetti
H0(XR,O(1))Betti.

By Lemma 4.1.5 of Jaburi’s master’s thesis, H0(XR,O(1)) ≃ R3, and pullback along the
point at infinity gives a surjection H0(XR,O(1)) → C ≃ R2, so that choosing a splitting
gives

BC(O(1)) ≃ A1,an ×CBetti
(CBetti × RBetti) ≃ A1,an × RBetti

as claimed.

In fact, we can be a little more precise: the map Rla ≃ BC(O) ↪→ BC(O[∞]) factors
through the kernel of H0(XR,O(1))Betti → CBetti, which by the discussion above is RBetti.
On the other hand taking the fiber at infinity gives a surjection BC(O(1)) → A1,an given on
A-points by the left vertical map above BC(O(1))(A) → A, whose kernel is then RBetti. This
gives a short exact sequence

0 → RBetti → BC(O(1)) → A1,an → 0

of Rla-module objects in TDStack, which splits on C-valued point, or equivalently on Betti
stacks, and thus splits in TDStack. An explicit splitting is given by identifying C-points
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4 WORKING OVER C

of BC(O(1)), after pullback along Gm → XR (so away from 0 and ∞), with functions
az + b + az−1 for a ∈ C and b ∈ R corresponding to (a, b) ∈ (A1,an × RBetti)(C). One
can check that this splitting is U(1)-equivariant, and in fact is the unique U(1)-equivariant
splitting.

So in summary we have obtained an explicit description of Div1 as ((A1,an × RBetti) \
{0})/R×,la. Our next goal will be to relate vector bundles on Div1 to representations of
the real Weil group WR; however from this presentation it is not clear how this should
work. Therefore we’ll first see if we can give a second presentation for Div1 which makes the
connection with the Weil group clearer.

4. Working over C

Throughout this course, we have generally worked over R as our archimedean local field of
interest, though sometimes with complex coefficients. However there is of course another
archimedean local field, namely the complex numbers. Most of the story over C is very
similar to over R, and indeed often simpler, e.g. the (absolute!) archimedean Fargues–
Fontaine curve over C is just P1

C, and one can generally recover everything by pulling back
from the version over R. However it will be useful for us to make some of the story explicit
over C: in particular we will eventually obtain a second description of Div1 which will be
useful to us for understanding representations of the Weil group.

First, we need to define the relative complex Fargues–Fontaine curve in families. We do
this by pullback:

XC,A = XR,A ×AnSpecR AnSpecC.
Explicitly, bearing in mind that the preimage of the complex point at infinity is now two
points {0} ⊔ {∞} in P1

C, the relative curve is given by the pushout

AnSpecCont(S,C) ⊔ AnSpecCont(S,C) P1
C ×AnSpecC Cont(S,C)

AnSpec(A⊗C,z 7→z C) ⊔ AnSpec(A) XC,A

0⊔∞

.

We can then define PicC as the stack sending A to line bundles on XC,A; exactly as for real
numbers we verify that this is a totally disconnected stack and that there is an isomorphism⊔

n∈Z

∗/C×,la → PicC,

giving rise to a degree map deg : PicC → Z sending OP1
C
(n) 7→ n. Note that this is not

(naively) compatible with pullback of line bundles from the real case: if νA : XC,A → XR,A
is the covering map and ν∗ : Pic → PicC the induced pullback, then deg ◦ν∗ = 2deg.

We can similarly define Div1C, where we do have a well-defined pushforward of divisors
Div1C → Div1, sending V (s̃) → XC,A to its composite V (s̃) → XC,A → XR,A. This is invariant
under complex conjugation, suggesting the following proposition:

Proposition 13. The natural map

Div1C /Gal(C/R) → Div1
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is an isomorphism.

Proof. The fibers of Div1C → Div1 are lifts of divisors V (s) to C. Since XR,A locally lifts to
C, so we can always find lifts locally, and any two local lifts are Galois conjugate.

Completely parallel to Proposition 11, we have the following description of Div1C:

Proposition 14. There is an isomorphism

Div1C ≃ (BCC(O(1)) \ {0})/C×,la

in TDStack, where BCC is the variant of BC replacing XR,A by XC,A.

We then want to describe BCC(O(1)):

Proposition 15. There is an isomorphism

BCC(O(1)) ≃ A1,an × A1,an

of BCC(O) ≃ Cla-module objects, where z ∈ Cla acts on A1,an×A1,an by z ·(t1, t2) = (zt1, zt2).

Proof. Similarly to the proof of Proposition 12, we obtain from the pushout description of
XC,A the formula

BCC(O(1)) ≃ (A1,an × A1,an)×(C×C)Betti
H0(P1

C,O(1))Betti.

In this case H0(P1
C,O(1)) ≃ C× C and in particular the map H0(P1

C,O(1)) → C× C given
by taking the fibers at 0 and ∞ is an isomorphism, so we recover the stated formula. The
action of C×,la comes from the twist by complex conjugation on one factor of A1,la(A) = A
in the pushout definition of XR,A.

Again, we can be a little more precise: taking the fibers at 0 and ∞ gives an isomorphism

BCC(O(1)) ≃ A1,an × A1,an

which on C-points (away from 0) identifies points of BCC(O(1)) with sections az+b of O([∞])
for (a, b) ∈ (A1,an × A1,an)(C).

We can identify A1,an×A1,an with A2,an with a nonstandard action of Cla (via the twist by
complex conjugation). This in turn can also be identified with BC(O(1/2)), where O(1/2) =
ν∗O(1), by similar arguments, which has automorphism group H×; in particular embedding
C× ⊂ H× we get the right action of C× on A2,an.

Combining Propositions 13, 14, and 15, we obtain another description of Div1 as the
quotient of the punctured plane by two groups: first by C×,la, and second by Gal(C/R).
Recalling that the real Weil group WR ⊂ H× is the combination of these two groups, we
might guess the following description:

Corollary 16. There is an isomorphism

Div1 ≃ (A2,an \ {0})/W la
R

where WR ⊂ H× acts on A2 ≃ H⊗C A1,an by multiplication on the left factor.
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Proof. Fix an embedding C ⊂ H = End(O(1/2)) as a maximal commutative subalgebra.
For a fiberwise nonzero section s : O → O(1/2), base changing to C gives a map C⊗R O →
O(1/2) which is a degree 1 embedding of vector bundles and so defines a degree 1 divisor as
its cokernel. This gives a map

BC(O(1/2)) \ {0} → Div1 .

It is invariant under the action of the normalizer of C in H, which is precisely WR; this can
be understood as the combination of the invariance under C×-scaling and Galois conjugation
of Propositions 13 and 14. Thus we get a map

(BC(O(1/2)) \ {0})/W la
R → Div1 .

Identifying BC(O(1/2)) with A2,an as above, we see that in fact this map must be an isomor-
phism and gives the claimed description of Div1.

This is now much more amenable to the kind of relationship we want to study: vector
bundles on Div1 are now manifestly equivalent to WR-equivariant vector bundles on A2,an \
{0}. In the next section, we’ll see how these more directly relate to locally analytic WR-
representations.

First, though, we want to make explicit the relationship between the two descriptions of
Div1 as ((A1,an ×RBetti) \ {0})/R×,la and (A2,an \ {0})/W la

R . In the language of archimedean
Banach–Colmez spaces, this can be interpreted as follows: for a section s of BC(O(1/2)),
or equivalently of BCC(O(1)), we want to associate to it a section t of BC(O(1)) with the
same vanishing locus. This will then give the isomorphism from the second description to
the first.

Explicitly, a section s of BCC(O(1)) is a section az+b for (a, b) ∈ (A1,an×A1,an)\{(0, 0)}),
which we can map to

(az + b)(−az−1 + b) = abz + (bb− aa)− abz−1

which corresponds to (ab, bb − aa) ∈ (A1,an × RBetti) \ {0}. There are two copies of C×,la

inside W la
R , and one can check that the prescribed action of z ∈ C× on A2,an induces actions

by zz and −zz respectively for these two copies on A1,an×RBetti. One can also give a similar
formula in the other direction.

5. L-parameters and Div1

Our final goal for today is to start the discussion of how L-parameters are related to the stack
Div1. We have seen that we can identify Div1 with (A2,an\{0})/W la

R , and so there is a natural
projection Div1 → ∗/W la

R . Pullback therefore induces a functor D(∗/W la
R ) → D(Div1). To

say more, it would be convenient if we could work with A2,an/W la
R rather than the quotient

of the punctured plane, since then the origin gives a canonical section ∗ → A2,an giving rise
to a factorization of the identity

∗/W la
R

s−→ A2,an/W la
R

π−→ ∗/W la
R .

One of our main results next time will be the following theorem saying that we can use these
perspectives interchangeably:

8



5 L-PARAMETERS AND Div1

Theorem 17. Every vector bundle on Div1 ≃ (A2,an\{0})/W la
R extends uniquely to A2,an/W la

R .
In particular on the level of isomorphism classes, vector bundles on ∗/W la

R , i.e. locally
analytic WR-representations, embed into vector bundles on Div1 via π∗. If s∗V is semisimple
as a WR-representation for a vector bundle V on Div1, then V is in the image of π∗, inducing
a bijection between isomorphism classes of semisimple WR-representations and semisimple
vector bundles on Div1.

More generally, we want to study L-parameters, which for (say) a split group G are

classically given by maps φ : WR → Ĝ(C). This suggests that L-parameters for G should

correspond to Ĝ-torsors on Div1; this is what we will generally mean by L-parameters in our
geometrization going forward.

In general, though, there are Ĝ-torsors on Div1 which do not correspond to any classical L-
parameters. This is actually a feature, not a bug: archimedean L-parameters are often poorly
behaved in families, which is a major issue with the archimedean local Langlands program.
For example, while as G(R)-representations the principal and discrete series representations
interact,1 their L-parameters are in some sense in different components of the parameter
space. One possible solution is to allow “refined” parameter spaces in which degenerations
from discrete to principal series L-parameters exist, as introduced by Adams–Barbasch–
Vogan. We will see (next time) that these refined parameters can also be related to Ĝ-
torsors on Div1.

For now, we focus on a simpler piece of the story. We are interested in studying vector
bundles on Div1 ≃ (A2,an \ {0})/W la

R . To make things easier, we can look at the cover
Div1C ≃ (A2,an \ {0})/C×,an, or even simpler inside A2,an \ {0} we have the open locus G2,an

m

where the C×,la-action is free, giving an identification

G2,an
m /C×,la ≃ C×

Betti.

On the other hand the natural projection G2,an
m /C×,la → ∗/C×,la gives a map

C×
Betti → ∗/C×,la.

Vector bundles on the target are locally analytic C×-representations; vector bundles on the
source are local systems on C×, which are determined by their monodromy.

We briefly review the representation theory of C× in a convenient language. First of all,
the representation theory of C as an additive group is simple: all irreducible representations
are one-dimensional, and of the form z 7→ exp(λ1z + λ2z) for λ1, λ2 ∈ C. To relate this to
C×, we use the exponential sequence

0 → 2πiZ → C exp−−→ C× → 0

so a character of C descends to one of C× if and only if λ1 − λ2 ∈ Z, i.e. characters of C×

correspond to pairs (λ1, λ2) of complex numbers where λ1−λ2 ∈ Z. In particular we associate
to any character χ (corresponding to some such (λ1, λ2)) the invariant α = exp(2πiλ1) =
exp(2πiλ2).

1I would like to understand this better—I believe Scholze talks about it in his first Noether lecture on
this topic, but I haven’t had time to go look back; I’ll edit this if I do.
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We claim that for a character χ of C×, viewed as a line bundle on ∗/C×,la, the pullback
to C×

Betti is the local system with monodromy α = α(χ).
Indeed, take an embedding C×,la ⊂ G2,an

m and consider a Z-cover G → G2,an
m whose

fundamental group agrees with that of C×,la inside G2,an
m , so that the embedding C×,la ⊂ G2,an

m

lifts to C×,la ⊂ G. The quotient G/C×,la is CBetti, so we have a Cartesian diagram

CBetti ∗

∗/C×,la ∗/G

so since C is contractible pullback along the lower map induces an equivalence of vector
bundles. In particular, any character χ of C×,la extends uniquely to a character of G.

The fiber of G over (z1, z2) ∈ G2,an
m is isomorphic to Z; for a character χ associated to the

pair (λ1, λ2), its evaluation on elements of the kernel (1, 1, n) is exp(2πiλ1n) = exp(2πiλ2n),
and so in particular on a generator of the kernel we recover α. On the other hand the Z-cover

G/C×,la ≃ CBetti → G2,an
m /C×,la ≃ C×

Betti

is (the Betti stack version of) the exponential map for which the action of the generator of
the kernel is exactly the monodromy.

More generally, a representation φ : C× → GLn(C) is determined by two commuting
n × n-matrices λ1, λ2 over C such that exp(2πiλ1) = exp(2πiλ2) =: α ∈ GLn(C), which
can similarly be thought of as the monodromy of the pullback of the corresponding vector
bundle on ∗/C×,la to C×

Betti. We can show that φ is semisimple if and only if α is: if φ is
semisimple, it is a sum of characters and so α is as well by inspection. On the other hand if
φ is not semisimple, it is the extension of some set of characters; but two distinct characters
of C× have no extensions, so it must be the extension of a character by itself (some number
of times), which we can assume by twisting to be the trivial character. Thus in this situation
φ is an extension of direct sums of the trivial character, so λ1 and λ2 must be nilpotent; but
then the exponential map is injective on them, so λ1 = λ2 are determined by α, and would
have to be trivial if α were semisimple.

Thus we can relate vector bundles on the large open subspace G2,an
m /C×,la ⊂ Div1C to

C×,la-representations. Next time, we will study how we can extend this to the whole space,
and the descent to Div1. This already involves studying these geometric spaces via analytic
tools such as T -connections, which we can understand as a transmutation interpretation;
time permitting we will begin to look further into how spaces such as Div1 and its relatives
can be used to classify such structures and others, including relationships to twistor and
Hodge structures.
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